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Abstract

The paper is in two main parts. In the first,
recent progress is described in the development of
a finite-difference method for inviscid three-
dimensional flows about arbitrary wings, based on a
new transonic small-perturbation approximation, the
rotated or split difference scheme of Albone and
Jameson and the relaxation technique of Murman and

Cole. An account is given of the formulation of the
problem, the transformation to a new coordinate
system, and the numerical method of solution. Com—

parisons are given with solutions by other methods
and with experimental measurements for an example in
which viscous effects are expected to be relatively
small.

The second part of the paper is concerned with
the estimation of viscous effects in flows about
two-dimensional aerofoils. A method is evolved
which requires modification to the boundary condi-
tions at the aerofoil surface and along the dividing
streamline, in methods normally used for inviscid
flow. In the calculation, methods for the calcula-
tion of the viscous layers, which are assumed to be
turbulent except near the nose of the aerofoil, are
combined iteratively with the modified inviscid flow
method. Comparisons with experiments include cases
where the calculation of the inviscid flow is itself
iterative and weak shock waves are present.

I. Preliminary remarks

There are several reasons for attempting to
improve aerodynamic design.- Aircraft manoeuvr-
ability or operating economy can be improved, for
example. It has been estimated(l) that the exploi-
tation, in transport aircraft design, of recent
advances in transonic aerodynamics should enable a
doubling of aviation fuel costs, relative to other
costs, to be compensated for entirely. Our aim here
has been to improve the aerodynamic design of air-
craft in the transonic régime by providing the
designer with advanced calculation methods. The
work has now reached a stage where transonic flows
about arbitrary wings can be calculated to a reason-
able approximation and the methods are actually
used in practical design. However, much more
remains to be done. In particular, the accuracy of
the inviscid methods needs to be improved, and the
treatment of viscous effects, of shock waves and
their interactions with boundary layers, of combined
wing-body configurations and of the inverse design
problem all require attention.

Our work is part of the growing stream started
by Murman and Cole.{(2) Their introduction of a
relaxation technique for calculating mixed subsonic-—
supersonic flows has transformed an almost totally
barren scene into one of the fruitful abundance.
With the aid of the ideas of Albone(3) and
Jameson (#) who independently showed, with their
equivalent 'split' or 'rotated' difference schemes,
how coordinate systems could be chosen to suit the
body geometry or for other reasons rather than be

limited by the geometry of the flow, a wide variety
of problems can now be treated.
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In the first part of this paper a method
developed by Albone, Hall and Joyce(5) for calculat-
ing the inviscid three-dimensional flow about
arbitrary wings is described. The method is based
on a transonic small-perturbation approximation
rather than the exact equations, on the following
argument. For practical purposes, we Wish to be
able to treat wings with arbitrary planforms and
arbitrary spanwise variations of section and twist.
To satisfy exactly the flow-tangency boundary condi-
tion on the surface of such a wing would be a very
formidable task even 1f the problem proved in
present circumstances tractable. Thus, the solution
of the exact equations would, at least, be a lengthy
process. On the other hand, experience with two-
dimensional problems has shown that the transonic
small-perturbation equation for the velocity poten-
tial can yield results that are for practical
purposes satisfactorily close to solutions of the
exact equation, even when the free-stream Mach
number is not near 1| and the perturbations are far
from small. (See, for example, Figs.l6 and 17.)
Because the flow-tangency boundary conditions are in
such a case satisfied on a plane and not on the
actual surface, a transonic small-perturbation
problem can be formulated for arbitrary wings with-
out the difficulty associated with an exact treat-
ment of the boundary conditions. Moreover, such a
formulation enables the inverse design problem and
viscous effects, which are also of practical
importance, to be treated readily.

In the second part a scheme is outlined by
which an *allowance is made for the boundary layer
and wake when determining the pressure distribution
on aerofoils. Although the method has so far been
limited to attached flow, it turns out that even
for this case very important changes in pressure
distribution can occur for aerofoils having
significant rear loading or when there are shock
waves. This suggests that an allowance for the
viscous layer should be included in design methods
for three-dimensional wings.

II. Inviscid transonic flows over wings

Introductiocn

The method developed by Albone, Hall and
Joyce(s) is similar in some respects to the revised
version of the method of Ballhaus and Bailey(7)
described by Bailey(g) in his recent survey of the
computation of transonic flows by relaxation
methods. ' For each method the successive line
relaxation technique of Murman and Cole is adopted,
in which the key is the use of different finite-
difference approximations for the subsonic and
supersonic parts of the flow. And for each method
the split or rotated difference schemes of Albone(3)
and Jameson are employed to enable an efficient
wing-oriented coordinate system to be adopted. The
essential point here is that, to avoid the numerical
instability that arises when the domain of depend-
ence for the difference equation does not include
that for the differential equation, one can split
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the derivatives in the differential equation into
components according to the canonical or flow-
oriented form of the equation and approximate these
components by finite differences according to how
one would approximate the related derivatives in
the canonical form.

However, in other respects there are signif-
icant differences between the two methods. The
transonic small-perturbation equation that we solve
differs from that solved by Bailey in having extra
terms. Bailey's form of equation is the commonly
used equation derived by Cole and, in Cole's
approximation, strictly valid only for wings of
very high aspect ratio. Our form of equation arises
from a new formulation of the transonic small-
perturbation problem for arbitrary wing planforms.
While Bailey uses a non-uniform mesh to achieve
the variations in mesh density required for both
accuracy and economy, we employ coordinate stretch-
ings which meet the same requirement but permit the
use of a uniform mesh in the computing space.
Moreover, these coordinate stretchings are used to
transform the infinite physical space into a finite
computing space and thus avoid Bailey's need to use
an approximate analytical expression for the far
field. There are, in addition, minor differences
in the treatment of the flow tangency boundary
conditions and the Kutta condition.

The present account begins with the formula-
tion of the transonic small-perturbation problem
for arbitrary wings. This includes a rearrangement
of the exact equation for the velocity potential so
that the derivatives are appropriately split, the
derivation of the transonic small-perturbation
equation, and statements of the boundary and Kutta
conditions. Next, the various transformations made
for convenience, accuracy and economy are outlined
and applied. Then the numerical method of solution,
involving the setting-up and solution of finite-
difference equations, is briefly described. Some
numerical results are presented, including compar-
isons with other .solutions and with experimental
measurements. Finally, an assessment of the method
is given, with a note of its shortcomings and of
the developments that might be expected in the
future.

Formulation of the transonic small-perturbation
problem

The desired form of the exact
equation for the velocity potential ¢ , in rectang-
ular cartesian coordinates x, y, z, 1s obtained
from the canonical form of the governing equatiou,
written in terms of coordinates x' 1in the local
stream direction and y' and z' normal to the
stream,

Exact equation.

(1)

where a and q are the local values of the speed
of sound and of the stream speed respectively,
related by

2
a

) (2)

where M is the free-stream Mach number and the
free~stream velocity has been taken to be of unit
magnitude.
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The underlined term in equation (1) is that which,
following Murman and Cole, would for numerical
stability be approximated by a backward difference
when the local flow is supersonic. The other terms
would always be approximated by central differences,
while the underlined term would be approximated by
a central difference only when the flow is locally
subsonic.

A transformation from the x', y', z' system
to the x, y, z system is now made by rotating the
coordinate axes. If the terms arising from the
above underlined term are themselves underlined and
kept separate from the others, equation (1) becomes

1 2 2 2 2 2
3 (a" = q") |u ¢xx + v ¢yy + w ¢zz
q
+ 2uvd + 2uwd + 2vwd }
Xy XZ yz
o a2 ( A 2)<I> r 2 s v2)¢ At IR w2)¢
R Y Pk 4 vy q zz
q
- 2uvd - 2uwd - 2vwd } = 0 (3)
Xy X2z yz
where u, v and w are the velocity components,
given by u =%, v=¢, and w =29, , and
q2 =u + v2 4+ wé ~ f

This equation is no more than a rearrangement
of the standard equation for the velocity potential,
in which each of the second derivatives has been
split into two parts. The Albone-Jameson procedure
is to approximate only the underlined term by back-
ward differences when the flow is locally super-
sonic. Otherwise central—-difference approximations
are used.

Transonic small-perturbation approximation.
The transonic small-perturbation equation may be
derived from the exact equation (3) in a number of
ways and we give here a derivation .a which the
scaling of variables is avoided but the physical
meaning of the basic assumptions is stressed.

¢ 1is
¢ defined

Firstly, the velocity potential
replaced by a perturbation potential

by

(4)

where the free-stream velocity is taken to be in the
x—-direction. The velocity components are now

o] X+

u = 1+ ¢x

= 5 5
v ¢y (5)
w = ¢z

The small-perturbation assumption consists in
assuming that the perturbation in velocity is small.
Thus 4., ¢ and ¢ must all be small. If, as

i P Z 15 3 .
shown in Fig.l, the z-axis is taken in the vertical
direction the slope 9z/3x of the wing surface
relative to the horizontal plane z const. is
given by w/u approximately, except possibly for
shapes of very low aspect ratio, which we exclude.

It follows that the slope w/u must also be smail.
It is convenient to write
e G T TR (6)
u



Fig.1

Coordinate system in physical space

The small-perturbation approximation cannot there-
fore be strictly valid in the neighbourhood of a
blunt leading edge but, as for aerofoils, we accept
this inconsistency and proceed. It is also conve-
nient to take a typical streamwise chord of the

wing to be of unit length, so the condition ¢, <}
implies that ¢ €1 and we write
Wy %= g e € 1 . (7

Now we introduce two lengths b and c¢ in the y
and 2z directions respectively, such that

6. ~ €/b

’ 1 (8)

¢, elc

The length b 1is related to the planform of the
wing. Thus for any wing of aspect ratio ~l1 , or
of any aspect ratio but appreciable (though not very
high) sweep, b ~ | On the other hand, for a wing
of high aspect ratio and small sweep, b >1 This
is consistent with the exact relation

¢y = = ¢x tan A for an infinite cylindrical wing
swept at an angle A . The length ¢ 1is related

to the wing slope w/u ~ & , since ¢, = w/u
approximacely, so that

ele ~ & . 9
Other relations to wing geometry will emerge.

The next step is to expand the terms in
equation (3) in the new dependent variable ¢ , by
making use of the conditions

¢ ~ e < |
- efb * .1 (10)

¢z ~ e/g_ < ]

Thus, on omitting quantities of third and higher
order, and on substituting in equation (3), we have

l:l - Mi - (y + 1)Mi¢;]¢>xx + Z(I - Mi)l}ﬁxy + ¢>z¢>xz]

2 L
s le ey, v e, - e -2,
= 0 (1)

To the first-order, the pressure coefficient is
given by
¢ =
P
The small-perturbation equation (11) is now
further simplified by making a transonic flow
approximation. We suppose that 1 - MZ ~'¢x i
that is

- 29 (12)
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(13)

Thus the second of the underlined terms in

equation (11) can be omitted. Furthermore, accord-
ing to the equation, (¢yy W) T Drligp e ey ,
¢y¢xy(~'€2/§2) or $,b,,(~ €2/c2) whichever is the
largest, even though - ¢yy ~ 5[57 and ¢zz “’e/gz X
Hence the term (y - 1)Mi¢x(¢yy + ¢,,) can be
omitted. The result is the transonic small-
perturbation equation for arbitrary wings

E - Mi

+ + = &
¢yy ¢zz ¢y¢xy
where backward differences are to be used for the
underlined term when the local flow is supersonic.
This equation differs from the commonly adopted
equation (see Bailey(8)) in having additional terms
20ybxy and 20,0y,

2
SRR DL LI

- 2(i)z(bxz * @ (14)

Note that for b ~ 1 , that is, for wings of
aspect ratio ~l , or for wings of any aspect ratio
but appreciable (though not very high) sweep,

(¢yy + ¢,,) €e . Yet ¢y, ~ e , so it follows
that ¢,, ~ e and the length ¢ ~ | However,
for b > «» | that is, for a flow approaching that
past a two-dimensional aerofoilé ¢yy > 0 and
bydxy > 0 , while ¢,0,,(~ €2/c?) <4 ,(~e/c?) ,
and the equation reduces to the well-known form

-

which implies that ¢,, ~ €2 so that T et s
that is ¢ > 1 From the relations (7) and (9)

it follows that the perturbation potential ¢ ~ cé
and is larger for a two-dimensional aerofoil than
for a three-dimensional wing of the same thickness.
A summary of some of the differences between wings
and aerofoils is shown in the table below.

~ e e ve, =0, (5)

Quantity Wing | Aerofoil
b , length scale in transverse | LY
y~direction
¢ , length scale in vertical 1 6_]/3
z-direction
3 . 2/3
¢ , perturbation potential 8 8
1 - Mi s | §%/3
¢x , ~ pressure coefficient $§ 62/3
L 2/3
, ™~ Streamwise pressure 8 $
XX :
gradient
¢ , ~ vertical pressure 8 §
X2z i
gradient
¢ ¢ \ y |, 2
XXX terms in governing 9 4/3
) + @zz) differential § 8
9 gy equation 52 <S2
z' Xz
TABLE 1 MAGNITUDE OF VARIOUS QUANTITIES,

FOR WINGS AND AEROFOILS

Certain comments on the above may be made. For the
aerofoil, the magnitudes that have emerged for ¢,
¢ and 1 - MZ show that if new scaled quantities
of unit order of magnitude are to be defined then
the appropriate scaling is obtained by putting



1/3z

z 8
R

K —_—
62/3

These will be recognised as the scaled quantities
actually used by Cole,(9 Murman and Cole{2) and

others. Equation (15) can thus be reduced to the
familiar similarity form

E(- (v + 1)5);'5“( + 5;; = pU

This is used in the calculations described in the
second part of the present paper. For a wing the

(17)

corresponding scaled quantities are different. They
are -
A 2
- -1
6 ~ 8 ¢ (18)
f ol
k )

The difference between the relations (16) and (18)
does not seem to have been recognised. For example,
Bailey(8) uses the same scaling (16) for wings as
for aerofoils. Note, moreover, that from inspection
of equation (14) it does not seem possible to define
similarity parameters like K such that the solu-
tion depends only on K (as with aerofoils) and not
on the thickness § as well. 1In other words, there
does not appear to be a simple transonic similarity
rule for wings as there is for aerofoils.

The differences in the vertical length scale
¢ and the perturbation potential ¢ imply
differences in the physical flow fields. The
pressures, and streamwise pressure gradients, on
the wing surface are smaller by a factor ~&!
than those on the corresponding aerofoil surface.
For a wing the normal and streamwise pressure
gradients are of the same order of magnitude, but
for an aerofoil the normal gradients are smaller
than the streamwise gradients by a factor ~§1/3

The final comment on the differences between
wings and aerofoils relates to the terms retained
in the governing differential equation, in the
transonic small-perturbation approximation. If
(¢yy * ¢,,) is considered as a single term all the
terins in equation (14) are the same order of magni-
tude, 82 , when b ~ 1 and the equation is applied
to the flow past wings. In parti§u1ar ¢,9,, and
¢y¢xy are the same order of magnltgde as ¢x¢xx
However, when b + < and the equation is applied
to the flow past aerofoils, b,by, is smaller than
other terms like ¢,é,, by a factor ~§2

Just as for aerofoils, we wish to extend the
use of the transonic small-perturbation
equation (14) to the calculation of flows with
speeds that are not near-sonic and with perturba-
tions that are not small. In these circumstances
rigid adherence to the precise form of the equation
is unjustified and modifications are acceptable for
expedience or accuracy. To admit some flexibility,
therefore, we replace the equation by

xS gl Ca P
E M - (v + ”“wd b

T (byy 1) ¢ZZ

- 20900, - 208, = O, (9D
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where p 1is a constant and q and r are each
either unity or zero depending on whether we wish
to retain or omit the terms 2¢ ¢xy and  2¢,4,,
respectively. The introduction of the exponent p
is of course within the bounds of the transonic
approximation, because ME = M2[1 + 0(§)] . The
term 2¢z¢x would be expected to create numerical
difficulties when leading edges are very blunt and
the simplest expedient then would be to set r =0
When p=2 and q =r = 0 the equation reduces
to the commonly accepted equation of Cole,
Ballhaus and Bailey(7) and others.

Boundary conditions. The flow-tangency
boundary conditions takes the familiar linearized

form
st
(¢z)z=0 = Ix Syl
a=0

where @ 1s the angle of incidence of the wing
relative to the free stream and the wing surface

is given by z = zg (x,y) when o =0 Note that
this boundary condition is satisfied on the plane

z = 0 through the wing and not on the wing surface.

(20)

The boundary conditions at an infinite
distance from a finite wing differ greatly from
those in two dimensions. Except for the downstream
direction the perturbation potential tends to zero
everywhere with increasing distance from the wing.
Thus, with the coordinate axes shown in Fig.l, we

have for
or z > *o |
<@2n

Far downstream at the perturbation
potential ¢ satisfies the reduced equation

X > —o ¥ y+tm

¢ >0

X = +®

¢yy + ¢zz = 0 (22)
subject to the conditions
¢(z=+0) —~ ¢(z=-0) = {F%?% for y £y (semi~span)
(23)

¢(z > =) > 0

where TI(y) 1is equal to the difference in ¢
across the trailing edge of the wing at the station
y and is a measure of the strength of the trailing
vortex sheet.

For wings that are symmetrical about the

vertical section y = 0 we have the symmetry
conditions
= O 5 = -y O (24)
y b ¢xy

The numerical method described here is concerned
with this case.

Kutta condition. The pressure and flow
direction are required to be continuous across the
trailing vortex sheet. In the small-perturbation
approximation it suffices if ¢, and ¢, are
continuous across z = 0 It follows that the
jump in ¢ across the vortex sheet is independent
of x , for y = const. Thus the conditions to be
satisfied can be written
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te
where I(y) = [$(z = +0) - ¢(z = —O)]x=x » (25)
te
$,(z = +0) = ¢ (z =-0),
and x = X at the trailing edge.

Coordinate transformation

Transformation to near—rectangular planform.
We first make an intermediate transformation which
has as its main purpose the alignment of coordinate
lines with the leading and trailing edges of the
wing, so that the mesh density needed for accuracy
can be obtained economically. Accordingly, we

replace the variable x by x*(x,y) where
x - g, (y)
* e = QOIS E & 26
< 8,(y) - g, (y) 148
As shown in Fig.2 the functions gj(y) and gy(y)

define curves which follow the leading and trailing
edges respectively, except at the centre section

y = 0 and at the wing tip. In the x*, y plane
the planform is nearly rectangular, with sweep,
taper and cranking all removed. The functions
g1(y) and g,(y) are chosen to depart smoothly
from the wing planform and are continued analyt-
ically. At the centre-section they intersect the

X axis at right angles, to simplify the application
of the symmetry condition. Beyond the wing tip
they tend asymptotically to a pair of lines parallel
to the y axis.

-WING PLANFORM

T=
(), "= const

L/
2 (1), x®= Const

Fig.2 Wing-oriented coordinate lines x* = const.

in physical space

Coordinate stretching. We complete the
coordinate transformations by introducing separate
stretchings of the x*, y and 2z ordinates, to
transform the infinite physical space to a finite
computing space and to provide increases of mesh
density in the physical space where they are needed.
Accordingly, we replace x*, y and 2z by X(x*),

Y(y) and 2Z(z) respectively where
= e * %

X (1 al)Xl(x ¥ ¥ alXZ(X )

Y = (I =bDY () + blby¥,(y) + b¥,(y) ] (27)

dy = Z](z)
where ay, bl’ b and b are constant. The
functions Xl(x*g, Xo(x®), Y (y), Yo(y), Y3(y) and
Zy(z) are all simple analytic functions. Essen-—
tially Xy, ¥y and Z, provide a fairly uniform
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mesh density near the wing and a gradual reduction
of density with increasing distance from the wing,
and are such that

X(x* = 2a) = +]
Y(y = =) = 1 (28)
Z(z = to) = #]
The functions X,, Y, and Yq respectively provide

higher mesh densities near the leading edge, the
centre-section and the wing tip.

The problem in the transformed coordinates.
Replacement of the dependent variables x, y, z
the governing equation (19) by the new stretched

in

variables X, Y, Z defined in equations (26) and
(27) yields
*
K ¢XX ¥ A¢XX = B¢YY » C‘i)ZZ
* =
+ 2D¢XY + 2E¢XZ el ol 0 (29)
£ — M= p 2
where A* I:l M (y + l)Mwa(bX] Xx
A=X |X = 2qk X LK
yl:y Px y¢X y¢y)}
B = Y2
y
C = Z2
z
D=Y |X - gX (X # ¥
y[y By ¢ y¢X y¢Y)]
= 2
E=-r1XZ%,
* = A P :l
[ E ML= Gy o+ DMIX 6K dy
= Yyy¢Y o Zzzd')Z
g = 2g%. (X 4
[yy ax,., (X by y¢Y)]¢X
Note that the derivatives bgx and ¢y in

the computing system X, Y, Z are split into an
underlined part to be approximated by backward
differences and a part to be approximated by central
differences, for supersonic flow. All other terms
are to be approximated by central differences
whether the flow is subsonic or supersonic. We
consider the flow to be subsonic when A* > 0 and
supersonic when A* < 0 , which is strictly correct
to first-order only.

The flow-tangency boundary condition (20)

becomes
a0
Zz 2% a=0

The far-field boundary conditions (21),
(23) become

$,(z = 0) = (30)

(22) and

for K& La]r n ToE or z = *1
31
Bl =9 g
for X = +1 ,
Y2+ Y 6y v 2%, +Z 4, = O (32)
v ¥YY yy' Y z"ZZ 22" Z ’
subject to
7=40) - $(z=-0) = {{ A for Y 2 ¥ (semi-span)|
¢ (Z= b (Z= = 0 or = i-sp L (33)
$(Z = x0) = 0



The symmetry condition (24) reduces to
Y 0 ¢Y 0

(34)

> >

¢XY
because the lines gl(y)
plane of symmetry Y = 0
Xy = 0 there.

and gz(y) intersect the
at right angles, so that

Finally, the Kutta condition (25) becomes

$(Z = +0) - ¢(Z2 = -0) = I'(V)
: T,
where r(y) = ED(Z = +0) - ¢(Z = -O):l X=X 35
te
8,(Z = +0) = 4,z = ~0)

Numerical method of solution

Outline of procedure. The method of solution
is very similar to that generally adopted for two-
dimensional problems. A uniform three-dimensional
mesh is placed in the computing space, lxl <1,

Yy <1, |z] <1 The problem of solving the
differential equation (29) is changed into one of
solving a set of simultaneous algebraic equations,
the unknowns being the values of ¢ at the mesh
points or nodes, by replacing the derivatives with
finite-difference approximations. Details of the
approximations and the resulting algebraic equations
are given below. The equations are solved by an
adaptation of the iterative successive line relaxa-
tion technique used in two-dimensional calculations.
To start the computation an initial estimate for ¢
throughout the field is needed. We assume for this
that ¢ 0 everywhere, unless there is a suitable
solution already available. The basic element in
the computation is the simultaneous solution of the
subset of algebraic equations for new values of ¢
01 a vertical column X = const., Y const., using
values from the previous cycle of the iteration
where necessary. The coefficients in the subset
form a tridiagonal matrix and the equations are
readily solved by triangular resolution of the
matrix and back-substitution. The newly calculated
values of ¢ are over- or under-relaxed with
reference to the previous values, by factors deter-
mined by trial, and the computation then proceeds
to the next column. A single cycle consists of a
sweep through the whole field, re-evaluating ¢
one line after another. The cycles are repeated
until the changes in ¢ from one cycle to the next
are less than some assigned small quantity, when
the solution is considered to have converged.

on

Difference approximations. Mesh points are
identified in the manner shown in Fig.3. At a
typical mesh point (i,j,k) that is in the interior
of the field away from boundaries, finite-difference
approximations of different types are made according
to whether the flow is subsonic (A* > 0) or super-
sonic (A* < 0), and subject to the rules for split
derivatives given earlier. Where central-
difference approximations are required we take

O3 = (0 5T 9, 1)/280
2
(¢i+1,j,k Gb ¢i—1,j,k)/(AX)

(¢i+],j+1,k Bhs Y P
]

B (53510
by s35K)

R TN R A S P /(Z‘AXAY)

(36)
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and similar expressions for ¢

&y -+
Where backward-difference approximations are
required we take
¢X(1)J )k) <¢i,j,k = ¢i—2,j,k)/(2AX)
bgx (1adsk) = ("i,j,k" 205-1,3,k \i 4

2
s ¢i—2,j,k)/(“)

Note that the approximations for second derivatives
recommended by Jameson for numerical stability
differ slightly from, and are slightly more com—
plicated than these. We have tried Jameson's
recommendations and have not so far found any
improvement in stability or rate of convergence.

(il kel ) (st jk+1)
Y

(isljerx)

(i~2,ik) (i1 %) I( iy jak) (b k)

| + |

(i-lj-hk) (ij-Lk) Cithy=ix)

(=1, joh=1)

Fig.3

Civiek=1)

Cislik=t)

Mesh points in computing space

If we denote the value of ¢ evaluated in
the current cycle by $(n)  and that in the previous
cycle by ¢(“’1 the precise form of the
difference equation obtained by substituting the
above difference approximations into equation (29)
will depend on the ordering of the sweep through

the field in each cycle. We sweep through success-

ive planes X = const. 1in the order of increasing
X and in each plane we solve for ¢ on successive
columns Y = const. in the order of increasing Y .

When the flow is subsonic (A* > 0) at the point
(i,j,k) equation (29) becomes

(n) (n) (n) =
¥y g YRSy TR pep e LTI
where dk & C(AX/AZ)2
R4 2[5* + A+ BQX/AZ + cmx/zsz){l
b = c(ax/az)?
K
and
(n-1) (n)
s & —é*(¢i+l,j,k+ ¢i—1,j,k)+ £



(n=1) (n)
where fk ) A(¢i+l,j,k ; ¢i—l,j,k)

saen2pE0 - )

(n-1) (n)
- %D(AX/AY)(¢:'L+1,J'+1’1< T 1,51,k
_ ¢(n) L (n—l) )
=154,k Yitl, g1k

1E (AX/AZ) (‘bf:}?l’; Jk+1 + ¢](_r—1? 53 ,k-1

_ () = fn=1)
11,5, k41 ¢i+1,j,k—1)

e + &) 0’ .

When the flow is supersonic (A% < 0) equation (29)
becomes

1 (n) [ (n) v (n) - v
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Special difference approximations. Modifica-
tions of the above are needed where the symmetry,
flow tangency and vortex sheet conditions are to be
satisfied. When a point (i,j,k) lies on the plane
of symmetry Y = O the symmetry conditions (34)
are satisfied by putting

[
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whenever these occur in equations (38) or (39).

The flow-tangency condition (20) is satisfied
on Z = *0 for each point (i,j,k) on the wing plan-
form in the course of satisfying the governing
differential equation (29) there. Accordingly the
terms ¢,, ¢XZ and ¢, in equation (29) are not
given by finite-difference approximations as
indicated in equations (36). Instead, ¢, is
given by equation (30) and we set

1
Esxz(Z & to):li,j,k = W{E’z(z - to)] £+1.4 ok
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Note that the last is a one-sided, first—-order
approximation. Substitution of these into
equation (29) yields, for subsonic and supersonic
flows, difference equations which correspond to
equations (38) and (39) respectively.

The vortex sheet conditions (25) are
incorporated into a special difference equation,
corresponding to equation (38) or (39), for points

at Z = +0 on the sheet, and the condition
@ =+0) -s@=-0)], r(Y)
te
is used to evaluate ¢(Z = -0) Care 1s needed

because, although by bxx and ¢, are continuous
throggh the.sheet, dys dxys ?YY and ¢5, are not.
We first write down the two difference equations for
the points at Z = +0 and Z = -0 respectively on
either side of the sheet, using one-sided diff-
erences in the same way as when the points lie on
the planform of the wing, but making use of the
conditions that ¢y and ¢yy are continuous
through the sheet. These equations necessarily
include the unknown quantities ¢5(Z = +0) and

¢7(Z = -0) respectively, and both include

$(Z = +0) and ¢(Z = -0) However, the conditions
(25) enable us to eliminate all of these except

¢(Z = +0) to obtain a single equation of the form
(38) or (39), but with special expressions for the
coefficients ap, by,

Sample calculations

The above numerical method has been used for
several calculations, for a variety of configura-
tions and for free-stream Mach numbers ranging from
0.6 to 1.2. Although development and refinement of
the method continues, an encouraging degree of
reliability and versatility has been achieved. To
illustrate this a selection of the calculated
results is presented here. Except where otherwise
stated we have taken p =1.95, q =1 and r =0
in equation (29). The choice of 1.95 rather than
2.0 for p gives a slight but barely significant
improvement in the agreement with the exact solu-
tions shown in Fig.4. The choice r = 0 facili-
tates the treatment of wings with blunt leading
edges where the perturbations are large. Instead
of the expression for the pressure coefficient
given by equation (12) we use the modification

2\ 2 2

c, = -2, - (1 - Mw)¢x -4

(42)
We begin a calculation with a coarse mesh, unless we
are seeking only a small perturbation from a known
solution, and complete the calculation with a

60 x 25 x 40 mesh. A typical calculation of the
flow about a given wing, for one free-stream

Mach number M_ and one incidence a , and
involving about 150 sweeps through the 60 x 25 x 40
mesh, takes about 30 minutes to complete on an

IBM 370/165 computer.

Fig.4 shows comparisons of calculated pressure
distributions with solutions of the exact equation
for the Xglocity potential by the method of
Jameson( , for a rectangular wing of aspect ratio
6 and having a NACA 0012 section. The exact solu-
tion differs considerably from that for the two-
dimensional aerofoil, so this comparison does
provide a test of reliability when the flow is
three-dimensional as well as when the perturbations
are not small and the free-stream Mach number is
not near unity (in the sense that we do not have
1 -M2 <),



 JAMESON

{a} Centre-section, 7 =0

JAMESON

{b) 2/3 semi-span, 1 = 0.667

Comparison with solution of exact potential
equation by method of Jameson4

Rectangular wing, aspect ratio 6, NACA 0012
section. M_, = 0.75, a = 2°

Fig.4

For swept wings of symmetrical planform there
are no such exact solutions available for comparison
and so we make comparisons with experimental
measurements in cases for which we expect viscous
effects and wind-tunnel interference to be small.
Comparisons are shown in Fig.5 with measurements
made at RAE of the pressure distribution over the
RAE Wing A at zero incidence. The wing planform
is shown inset. The wing has a symmetrical RAE 101
section of 9% thickness and is not twisted. The
comparisons show that fairly satisfactory results
can be obtained for a wing of moderate sweep, at
least for a simple non-lifting shape.

For lifting swept wings it is very difficult
to draw useful conclusions from comparisons with
experimental measurements, mainly because of the
uncertainties in accounting for viscous effects.
However, we have in such cases made comparisons
with results obtained by Lomax, Bailey and
Ballhaus. (! Fig.6 shows calculated pressure
distributions for a simulated Cl4] wing. Also
shown is the effect of setting q = 0 , which
reduces our governing differential equation to
essentially the same as that of Lomax et al. The
change in pressure distribution, in switching from

0-6 [

7 TN

cp

04f
-¢p

0-2

&

WING
PLARFORM

O]

02 04 0-‘6
X
3
—o.2L
=025
04
&, i S 8
g
0-2
e
. 02 o4 € 05 o8 ‘Q%o
T
—O-ZL -0-
n=0 2=0
Mg =0-85 Moa=0-90
Fig.5 Comparison with measured pressures on RAE
wing A. a =0, B 1.0 x 108
q=1 to q =0, is not negligible. The

differences between the Lomax pressure distribution
seem attributable to the
differences in detail in the two methods of solution
and, indeed, there is better agreement with more
recent calculations by NASA.

and that for

q =0

o
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Fig.6

Calculated pressures on simulated C141 wing

M, = 0.853, « = 0. Spanwise station 1 = 0.693

Figs.7 and 8 have been included to illustrate

the versatility of the method.

Fig.7 shows a

calculated isobar pattern on the upper surface of
a swept wing that is typical of modern transport

design, with considerable twist and camber.

Fig.8

shows the substantial difference in lift from that
given by lifting-surface theory(]l) when the flow
is supercritical.

Remarks on further work

The work has now reached a stage where
inviscid transonic flow about symmetrical wings
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Fig.7 Calculated isobars on upper surface of RAE
wing 759. M., = 0.84, « (at crank) = 1.27°.
; =—0.32, C; (normal to leading edge) = — 0.67
b % LiFTing sunFace Theory!!)
0-2 ///
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Fig.8 Calculated variations of lift coefficient with

incidence. RAE wing 759

with arbitrary planform and arbitrary spanwise
variation of section and twist can be calculated.
Also, the calculations have appeared to be
sufficiently accurate and economical for practical
designers to use the method. So far little has
been done to improve accuracy by refinements in

the coordinate stretchings, or by empirical modifi-
citions of the governing equation or of the
expression for the pressure coefficient, such as
were found in two-dimensional calculations to be
highly effective {and necessary) when perturbations
were not small. Improvements in accuracy from
modifications of these types should therefore be
expected. One prerequisite here is the development
of a method to take account of viscous effects, so
that comparisons with experimental measurements can
carry conviction.

Of course, much more than improvement in
accuracy is needed, if designers are to be provided
with all the computational tools they need. Obvious
extensions of the present work for the immediate
future are the inclusion of viscous boundary layers
and wakes, as already mentioned above, an improved
treatment of shock waves, for better predictions of
shock pressure-rise, the development of methods for

wing-body configurations, and the development of
inverse design methods.

Some progress in these has already been made.
The calculation of viscous effects for aerofoils is
described in the second part of this paper. At ARA,
Bedford, Langley and Forsey have already developed
a design method to a stage at which successful
designs for uncomplicated flows with single shocks
have been obtained. The method is based on a
modification of the direct method described here
in which the surface flow-tangency boundary con-
dition is replaced, over part of the wing, by a
surface pressure boundary condition. The wing
planform is fixed but otherwise there are a number
of options in what is prescribed and what is to be
calculated. An example is shown in Figs.9, 10 and
11, in which the leading-edge geometry, the overall

_ thickness distribution and the upper surface

pressure distribution aft of 10Z chord are
prescribed. Fig.9 shows the corresponding isobar
pattern. The calculation begins with an initial
solution obtained with the direct method for some
wing with a guessed spanwise variation of camber

and twist and yields, by an analogous iterative
process of line relaxation, the spanwise variation
of twist shown in Fig.10. Fig.ll shows calculated
camber lines and the corresponding pressure
distributions. Checks by forward direct calculation
have shown that within the bounds of the theory such
designs do indeed provide the required pressure
distributions, with the shock essentially in the
position and of the strength required.
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Fig.9 Isobars for specified upper surface pressure
distribution on ‘ARA wing
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Fig.10  Calculated spanwise variation of twist

of ARA wing
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(a) Spanwise station 1 = 0.080

(b) Spanwise station 1 = 0.797

Fig.11  Pressure distributions and corresponding
calculated camber lines for ARA wing
III. Estimation of viscous effects

General approach

In the first part of the paper we have
considered an approximate method for the determina-—
tion of the inviscid flow over a swept wing, but in
practice the aircraft designer requires a design
procedure which is applicable to compressible
viscous flow and this remains the ultimate aim. In
this part of the paper we consider the role played
by viscosity in determining the characteristics of
two-dimensional aerofoils as a first step in this
direction. For many years the importance of
viscous effects has been appreciated, but it has
not been until comparatively recently, largely
through the introduction of high speed digital
computers into common usage, that it has been
practicable to make much progress towards a calcula-
tion of the characteristics of an aerofoil in a real
fluid, that is, a calculation with a reasonably
realisvic allowance for the existence of a boundary
layer and a viscous wake,

Preston(!2) showed how the rigid boundary of
an aerofoil might be replaced by another equivalent
boundary for the caiculation of the representative
inviscid flow exterior to the viscous layers. The
equivalent boundary, or displacement surface as
shown in Fig.12 is defined so that the streamlines
of the inviscid flow over this surface enter the
boundary layer or wake at approximately the correct
angle and consequently the streamlines outside the
viscous layers are correctly simulated. Such an
equivalent boundary is formed by displacing the
rigid boundary normal to itself by a small distance

to account for the mass flux decrement in the
viscous layers and by representing the wake by a
similarly derived layer of finite thickness, whose
position is determined by a relationship between the
pressure difference across it, its thickness and

its curvature. The pressures can therefore be
obtained for the essentially inviscid flow bver this
boundary but with a prescribed pressure difference
across the wake. A correction should then be applied
to these pressures to derive the required prediction
of the pressure coefficient on the actual wing
surface.

EDGE OF VISCOUS LAYERS

DISPLACEMENT SURFACE

09

Fig.12  Typical viscous layers (Reynolds number = 107)

We have pre-supposed that a method exists for
determining the displacement thickness of the
boundary layer and wake. Near the trailing edge
the boundary layer and wake grow in a pressure field
with significant pressure gradients both along and
normal to the local stream direction and, strictly,
a theory is required for this class of flow, but in
order to make further progress we assume that the
growth is everywhere unaffected by normal pressure
gradients and that the well established methods for
the growth of the viscous layers may be used. The
important integral parameters are, as we shall sze
later, the displacement and momentum thicknesses,
and these may be obtained for a turbulent boundary
layer and wake by any one of the well established
methods. In the work we describe(13,14,15) we have
chosen to consider only methods which are readily
available, give sufficient accuracy, are applicable
to the normal Reynolds number range for wind tunnel
tests on aerofoils and which may be used for extra-
polation to flight conditions. We found that aft
of the location of boundary-layer transition and
for attached flow the integral parameters required
may be adeguately obtained by the entrainment method
of Green(19) for the pressure distributions
encountered on single aerofoils at near cruise
conditions in wholly subecritical flow, an example
of which is given in Fig.13; but for cases with
supercritical flow where shock waves are likely it
is preferable to use the more recent 'lag' entrain-,
ment method.{!7) Ahead of the transition the i
laminar layers have been determined by a version
of Thwaites' approximate method which is
extended for compressible flow by the Stewartson-—
Illingworth transformation.(!9) Since the subse-
quent development of a turbulent boundary layer when
calculated by the entrainment methods is insensitive
to the starting value for the shape factor
(H = 8%/0) at transition, it has been assumed that
the laminar value may be used; thus to some extent
we get a boundary-layer development resembling a



rapid change from a laminar to a truly turbulent
layer. It .has also been assumed that the momentum
thickness is continuous at transition except when
it is necessary to increase its value to account
for the influence of a transition trip.

EXPERIMENT
x BFT TUNNEL

Fig.13  Viscous layer — displacement thicknesses

To determine the influence of viscous layers
on the pressure distribution over an aerofoil we use
an iterative scheme, since the growth of the
boundary layer and wake depend on the overall
pressure distribution and, in turn, the pressure
distribution is modified as a result of the change
in the growth of the viscous layers. It is for-
tunate that the changes in boundary conditions due
to viscous effects, other than those close to the
trailing edge of the aerofoil and in the region of a
shock, are not exzcessive and consequently it has
been found possible to set up suitable iterative
procedures, similar in essence to the procedure used
by Lock, Wilby and Powell. (20)

Modified boundary conditions

The modification of any inviscid flow method
to include an allowance for viscous effects as
originally suggested by Preston requires the
modification of the boundary conditions while
retaining the same governing differential equations,
and in principle it allows the vast experience of
inviscid flow methods to be utilized. Also, since
the displacement surface is usually much thinner
than the aerofoil thickness, it is possible to allow
for the effect of the displacement surface by alter-
ing the boundary conditions at the original surface
or at the original place of application instead of
at the displacement surface.

Let us now consider the elements of flow
shown in Fig.l4. We need to represent the models
of the viscous flow (Figs.l4a and 14b), by a corres-
ponding inviscid model (Fig.l4c). It is possible
to show(13) that the difference in pressure across
a viscous layer that has a velocity defect is less
than that across a corresponding inviscid layer of
the same thickness and curvature but without a
velocity defect by an amount that is approximately
given by

2
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For a boundary layer or wake, considering only
the part above the dividing streamline, we have from
equation (43) using the definitions given in Fig.l4:

Pé u Pu i PG g " dzzu
2 2 - D2 -l= -2 (6% + 8 ) (44)
2 \ 2 u u
o U 20, .U dx

and for the lower side of the wake or the boundary
layer below the wing we have

2
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2 2
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where (P, - PQ)/(iong) is the pressure coefficient
required across the wing, and (P, i - Pg’i)/(%me%)
is the pressure coefficient applicable to the
inviscid flow model. It should be noted that

Py =Py and [d22/dx? lypper = [d22/dx2]) ey for
the wake., So using an inviscid flow model we may
simulate approximately the conditions for the
viscous flow by changing the wing boundary condi-
tions, including an extension of the wing boundary
into the wake. In a similar way we may consider
the influence of the displacement effect of the
layers as a change in the boundary conditions at the
same wing boundary.

4 DIVIDING
STREAMLINE

(b) Viscous model of
boundary layer

{c) Inviscid model
of wake

(a) Viscous model
of wake

Fig.14  Elements of curved flow

The procedure outlined above indicates how the
dominant terms from the influence of the viscous
layers might be included; it cannot be claimed to be
more than approximate and the result of any such
procedure must be judged by comparison with
experimental results.

The iterative schemes

The interaction between the inviscid flow and
the viscous flow is obtained by integrating the
methods available into a single program; the operat-
ing cycle commences with a given geometry, Mach
number, incidence and Reynolds number with fixed
transition points for each surface. The first part
of the calculation involves calculating the inviscid
pressure distribution for the actual aerofoil, but
it may be necessary to start the calculation at a
lower angle of incidence, say at an angle which
gives approximately the required Cy, » in order to
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avoid extremz conditions which will not be encount-
ered later in the calculation. If in practice the
inviscid flow method itself involves an iterative
procedure, such as described in the first part of

" the paper, then it is unnecessary to obtain a fully
converged solution before calculating the boundary
layer and wake development.(14 Instead the
"inviscid' cycle proceeds until the convergence
parameter € is less than some constant which is
sufficiently low to ensure that the correct form of
pressure distribution is obtained. At this stage
the boundary layer and wake displacement thicknesses
are calculated for this pressure distribution, but
some adjustment of the growth of the viscous layers
may be necessary in order to suppress the influence
of the singular behaviour of the velocity at the
trailing edge and so avoid, at this initial stage
of the procedure, any separation of the boundary
layer near that point.

The next stage 1s to revise the numerical
values for the boundary conditions. The ordinates
for the new displacement surface are obtained by
adding a proportion of the displacement thickness
of the boundary layer to the aerofoil ordinates
as follows,

+ X
Z(l)u Zu k(S(l)u ’ (47)
and
= x < : 4
Z(l)l Zl k6(1)2 for O X S| (48)
where k 1s a numerical constant. The thickness of

the wake is taken as
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while the pressure difference across the dividing
streamline is taken as
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and dZZ/dx2 (= dw/dx on the dividing stream-—
line or point at which boundary conditions are
applied) is obtained from the current solution of
the inviscid flow section of the program.

ac = 2k
P

At this stage we return to the inviscid
element of the program, with modified boundary
conditions, interpolating the data if necessary.
A typical scheme for the calculation is sketched
in Fig.15.

INPUT ~ GEOMETRY &
FLOW PARAMETERS

HMOOIFICATION
TO BOUNDARY
CONOITIONS WITH
UNDERELAXATION

CALCULATION OF
VISCOUS LAYERS

CALCULATION OF it
PRESSURE DISTRIBUTION

INYISCIO @C"V[
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»ot

Fig.15 Interactive iterative scheme

For all iterations after the first, the
boundary conditions are modified from the previous
set using a relaxation procedure. So equations (47)
to (50) become for subsequent iterations,

Zyy = (=0 k(Zu . G?N)u) (s1)

g = W=mzy i, s k(zl - G’EN)Z) (52)
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where N is the number of the iteration for the
interactive path, and the factor k has been
limited to 0.2 for a case where the boundary layer
is well away from separation near the trailing edge.
In addition to the above equations (51) to (54), the
angle of incidence is increased at a rate related to
k until the required angle is reached.

For calculations which include an 'iterative'
cycle for the inviscid flow as indicated in Fig.l5,
it has been found convenient to interrupt this cycle
every M iterations to update the boundary condi-
tions. The value of M 1is chosen by experience so
that the full viscous layers have been included
before the convergence of the 'inviscid' cycle is
indicated. The convergence of the 'interactive'
cycle is then checked by continuing the program for
one more interactive cycle with k = | , so that the
boundary conditions are obtained completely from the
current viscous flow calculation, and then resuming
the full scheme until convergence is again achieved
for the 'inviscid' cycle. By using such a procedure
it has been possible to reach converged solutions
with only a 20-30% increase in computing time com-
pared with a solution for inviscid flow at similar
conditions. In addition an intermediate solution
may be saved and used as a starting solution if

further solutions for the same aerofoil are required
at other initial conditions, of Mach number, Reynolds
number, transition positions, or incidence.
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Choice of inviscid flow method

The 'viscous' method described in the previous
section assumed the existence of a suitably modified
method for inviscid flow. Ideally this should be a
method which can be extended to three-dimensional
flows and sufficiently close to an 'exact' method
that any uncertainties will be small compared with
those due to the approximation made in inserting an
allowance for the viscous layers. At this stage
rapid advances are being made with finite-difference
methods for the 'exact' potential equations; but the
methods available when this work was commenced were
based on the small-perturbation concept and these
will be used in the work described here.

We will now consider two examples, for the
12%Z thick RAE 2822 aerofoil, to indicate the
accuracy obtained for pressure distributions similar
in form to those obtained in later examples for the
viscous flow. Other examples are available, for
instance in Refs.6 and 22, 1In Fig.16 a calculation
by the nominally exact method of Sells(21) is
compared with solutions from the 'subcritical’
inviscid flow method used at RAE (often called
the first-order Standard Method), and from the
'supercritical' inviscid flow method, called
Transonic Small-Perturbation Method (TSP), mentioned
in the earlier part of the paper. This example
is an exacting test for both the approximate methods,
since the 'subcritical' one is based on an
incompressible flow concept with corrections for
compressibility and the 'supercritical' one is
based on the transonic small-perturbation concept
which is 'tuned' to be used at higher speeds and
not for a pressure distribution such as this where
the flow is wholly subcritical. Both methods show
an underestimation of the local suctions over the
region of the 'roof top' in the pressure distribu-~
tion on the upper surface but they both show good
agreement with the exact solution over the rear of
the aerofoil. This is a most important region to be
considered when designing an aerofoil for attached
'viscous' flow. The other example (Fig.!7) is for
the same aerofoil at a higher Mach number. Here the
'exact' theory is obtained by the method of
Garabedian and Korn where the full equations
are solved for steady potential flow by a finite
difference method but no account is taken of the
entropy changes across any shock waves which appear
in the flow, and no attempt is made to ensure the
conservation of mass or momentum across such a
discontinuity. In this respect it is similar to
the small-perturbation method and neither can be
considered a truly exact solution. The example
given is for an extreme case where the strength of
the shock wave is higher than is likely to exist in
viscous flow without separation of the boundary
layer, even so the agreement is remarkably good,
except that the shock wave is slightly stronger for
the transonic small-perturbation method and diff-
erences exist in the pressure recovery behind the
shock wave similar in form to those existing some-
times in comparisons between comparable 'exact'
methods. Although the examples given are for one
aerofoil the discrepancies are similar in magnitude
to those found for a wider range of examples, and
the small-perturbation methods are certainly accept-
able as the basis of a viscons flow method which is
required for engineering design purposes.
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Fig.16  Comparison between various methods

{inviscid subcritical flow)

Experimental evidence

Before making comparisons between the scheme
proposed for viscous flow and experimental evidence
it is worth considering the accuracy of information
obtained in wind tunnels. Valid comparisons can be
made only if the necessary corrections for tunnel
constraints are adequate. It is well known that
relatively large corrections are necessary when
making measurements of the loads on two-dimensional
aerofoils in wind tunnels(24) and there is a high
degree of uncertainty about the magnitude of these
corrections for tests in tunnels with slotted(25)
or perforated walls. It is not uncommon for the
measurements of lift-curve-slope, measured in diff-
erent facilities at nominally the same conditions of
Mach number, Reynolds number and transition posi-
tions to differ by 5% or more even for wholly sub-
critical flow. The reasons for these differences
are difficult to establish but can be connected
partly with the influence of end wall boundary-layer
interference, the tests being done in rigs where
the span of the aerofoil is insufficient to estab-
lish truly two-dimensional flow. At higher speeds
where the flow is supercritical, with a shock wave
established on the upper surface, some evidence
exists from tests at comparatively low Reynolds
numbers based on the chord (I x 10°) of disturbances
from the end walls spreading across the span up to
about 0.7 chords.(26§ This suggests that significant
end wall interference may exist in measurements made
where the span/chord ratio of the panel is 1.4 or
less and ideally this ratio should be much higher.
Addi tionally Murman has cast doubt on the con-—
ventional methods of correcting for wind tunnel wall
interference where the conditions are such that a
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Comparison between methods (inviscid
supercritical flow — strong shockwave)

significant region of supercritical flow exists
between the aerofoil surface and the tunnel wall.
Although the methods suggested in the present paper
can be extended, as suggested by Murman, to include
such tunnel wall constraints, the correction is yet
another factor which causes uncertainty about the
experimental evidence. As with the conventional

me thod doubt exists about the magnitude of the para-
meters needed to specify the boundary conditions at
the tunnel walls.

In this paper we will consider only recent
experiments at RAE where interference effects have
been reduced as far as possible, by keeping the
model cross—sectional area small (0.3 % tunnel
cross-sectional area or less), and the model aspect
ratio and tunnel height/aerofoil chord ratio 3
relatively high (3.0 and 4.0 respectively). Even
in these experiments however, the situation regard-
ing wind-tunnel corrections cannot be regarded as
entirely satisfactory, particularly when extensive
regions of supercritical flow are present.

Magnitude of effect

The methods outlined above give us an
opportunity to assess the magnitude of the viscous
effects for a range of examples where the flow may
include supercritical regions and shock waves. In

the first example (Fig.18) the 'subecritical-flow'
me thod is used for a flow that is wholly sub-
critical and in which the boundary layers are com—
paratively thin, even in the region of the trailing
edge. It is notable that the magnitude of the
effect of viscosity is estimated to be quite small
for this example, and the change in lift is only

of the same order as the uncertainty in experimen-
tal evidence mentioned previously. In the second
example, which is for predominantly sub-critical
flow (Fig.19) the effects of viscosity are much
larger, because of increased rear loading and the
consequential rapid thickening of the boundary
layer over the rear part of the aerofoil. 1In this
example the influence of the viscous layers account
for a loss in lift of about 20% compared with the
value for inviscid flow. For this example results
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from bothk calculation methods are included, as well
as the experimental results, which have been
corrected by conventional means for tunnel effects.
The deficiency in the methods ahead of mid-chord on
the upper surface can be explained by the under-
estimation of velocities on the upper surface men-
tioned earlier for the 'inviscid' flow methods used
(Fig.16) but the underestimation of the influence of
the boundary layer ahead of about 407 chord on the
lower surface is unexplained. 1In spite of these
deficiencies the method appears to estimate the
influence of viscosity encouragingly well.
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In the next example (Fig.20) larger diff-
erences exist, primarily because of the additional
thickening of the boundary layer in the region of
the shock wave. The lag entrainment method for
determining the integral parameters of the boundary
layer calculates values for the boundary-layer shape
factor, in the region of the shock wave, which are
rising rapidly towards a value normally associated
with separation of the boundary layer. Under these
circumstances it is by no means certain that the
boundary-layer method can adequately represent the
correct growth of the viscous layers locally. The
difference between the inviscid flow and viscous
flow methods under these conditions suggest a loss
of lift due to viscous effects amounting to about
25% of the 'inviscid' value. The evidence from the
experiments is not nearly so conclusive in this
example, for although the pressure distribution over
the rear of the aerofoil appears to be adequately
predicted, it appears that the underestimation of
the influence of the boundary layer ahead of about
407% chord on the lower surface still exists, and the
shock wave is aft of the position predicted. It is
not clear whether these discrepancies arise from the
uncertainty about wind-tunnel corrections mentioned
earlier or are due to an inadequacy in the method of
treating the viscous effects. The comparisons
suggest that better agreement might be achieved with
a lower theoretical angle of incidence but this
results in the shock wave being predicted further
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forward on the chord, as given by the dotted line
for a case with the angle of incidence 0.5 degree
lower than the actual value. These differences are
unlikely to be explained by an inadequacy of the
inviscid flow element used unless it is due to the
failure to account correctly for the conservation of
mass or momentum correctly across the discontinuity
representing the shock wave. Some evidence
exists (8) that the position of the shock waves can
be significantly changed by attempting to improve
the conditions across the shock wave.

The calculations at two incidences shown in
Fig.20 make it clear that once aerofoils have
significant rear loading it is insufficient to
consider the influence of the boundary layer simply
as a change in effective incidence.

An example of scale effects

No discussion of the influence of viscous
effects on the pressure distribution over an aero-
foil would be complete without some statement on the
changes likely to occur when extrapolating measure-
ments made in a wind tunnel to full-scale conditions.
In Fig.2] measurements are given which show the
difference in pressure distribution measured when
an aerofoil is tested at the same incidence and
Mach number, but at different chord Reynolds numbers
with boundary-layer transition maintained close to
the leading edge. At the lower Reynolds number
there is some evidence of a gross disturbance in



the region of the transition fixing which may have
thickened the boundary layer thus exaggerating the
apparent scale effect to some extent. This disturb-
ance was due to the relatively large transition
fixing trip required at the low Reynolds number.
Increasing the Reynolds number results in an
increased pressure recovery near the trailing edge
and some increase in rear loading. There is also

a significant change in the development of the
pressure distribution in the supercritical region
consistent with an increase in effective incidence
and with the shock wave correspondingly further aft.
In Fig.22 predicted pressure distributions are given
for conditions identical to those shown in the
previous figure together with another case for a
higher Reynolds number appropriate to full scale
conditions. The trend of the results is very
similar to that found experimentally, the graphs
show the same general features discussed previously.
It does appear however, that the changes with
Reynolds number are not as large as found experimen-—
tally, but this is probably partly due to the thick-
ening of the boundary layer at transition in the
lower Reynolds number case. This point is 1llus-
trated further in Fig.23 where the normal force
coefficient obtained by integrating the pressure dis-
tribution is plotted against Reynoitds number based
on the aerofoil chord. An allowance (ABu = 0.0002)
was made for the additional thickening of the
boundary layer at trensition and this is shown to
account for some of the difference between the
measurement and the theory at the lower Reynolds
number.
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In making estimates of the influence of
viscous effects for engineering purposes it is
tempting to ignore the influence of the wake and the
corresponding curvature effects, thus including
only the changes due to the displacement effect over
the aerofoil. Although this goes some way to making
an allowance for viscous effects there are signifi-
cant differences due to the displacement and curva-
ture effects of the wake as illustrated in Fig.23.

Concluding remarks

Although this section of the paper has been
restricted to attached flow, the influence of the
viscous layers has been shown to make a significant
difference to the pressure distribution and loads
on aerofoils. It suggests than an allowance for the
viscous layers should be included in any method
which will be used for the design of wings, and that
for attached flow a reasonably realistic estimate
may be made using the concept of a displacement
surface with special boundary conditions in the
wake. It appears that it is not sufficient to
consider the influence of the boundary layer as an
effective change in incidence alone as had been the
practice for conventional aerofoils without
significant near loading.
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DISCUSSION

R. Legendre (ONERA, Chatillon, France): I was much
interested by the practical aspect of your results,
Dr. Hall, We will have opportunities to discuss
them at length.

For the moment, you will not be surprised if I
ask what condition you apply to the edges of the
wing. I understood you are interested by low prac-—
tical incidence and do not take into account sepa-
ration at the edges.

The flow is assumed to
be attached. We do not admit separation from the
leading edges. Difficulties associated with the
singularity at the leading edge in small-perturbation
theory are avoided by ensuring that the mesh or grid

M.G. Hall and M.C.P. Firmin:




points of the numerical calculation do not lie in
the leading edge.

H. Portnoy (Dept. of Aeronautical Engineering,
Technion, I.I.T., Haifa, Israel): In the example of
an inverse (design) problem given, the calculated
twist diverged unrealistically towards the tip.

Did the author know of any restrictive criterion
for inclusion in the wing planform-pressure-distri-
bution specification to avoid this unrealistic
shape resulting?

M.G. Hall and M.C.P. Firmin: The example was inten-
ded to illustrate the method rather than to show a
realistic or practical twist distribution. If the
pressure distribution that is specified leads to an
unrealistic shape we conclude that a different
pressure distribution is needed. There is no pro-
vision in the method for excluding pressure distri-
butions that lead to unrealistic shapes.
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